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Abstract

linear and logistic regression, two fundamental techniques in statistical learning and ma-
chine learning. develop the theory from first principles, derive key results, explore optimiza-
tion methods, and discuss practical considerations. make connections between statistical
and machine learning perspectives.
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Part I

Linear Regression

1 Introduction and Motivation

Regression analysis is one of the most widely used statistical techniques, forming the backbone
of predictive modeling in fields ranging from economics and finance to biology and engineering.
The term “regression” was coined by Sir Francis Galton in the late 19th century when studying
the relationship between heights of parents and their children, observing that children’s heights
tended to “regress” toward the population mean.

At its core, regression analysis seeks to understand and quantify the relationship between
variables. Given a set of input variables (also called predictors, features, independent variables,
or covariates), we wish to predict or explain a response variable (also called the outcome, target,
or dependent variable). This seemingly simple goal has profound implications for scientific
inference, decision-making, and prediction.

1.1 The Regression Problem

Definition 1.1 (Regression Problem). Given a dataset D = {(xi, yi)}ni=1 where xi ∈ Rp are
feature vectors and yi ∈ R are continuous response variables, the regression problem seeks to
find a function f : Rp → R such that f(x) approximates y well for both observed and unobserved
data.

The fundamental assumption underlying regression is that there exists some true relationship:

y = f(x) + ϵ (1)

where f(x) = E[Y |X = x] is the regression function (conditional expectation of Y given X),
and ϵ is random noise with E[ϵ] = 0.

This decomposition captures a fundamental truth about real-world data: observed outcomes
are determined partly by systematic, predictable factors (captured by f(x)) and partly by
random variation (captured by ϵ). The error term ϵ represents measurement error, inherent ran-
domness in the phenomenon, and the effects of variables not included in our model. A key insight
is that no matter how sophisticated our model, some irreducible error will always remain—this
is the price we pay for the complexity and randomness inherent in natural phenomena.

The goal of regression is twofold: prediction (estimating y for new observations) and in-
ference (understanding how changes in x affect y). These goals sometimes conflict; a model
optimized for prediction may be difficult to interpret, while a highly interpretable model may
sacrifice predictive accuracy.

1.2 Why Linear Models?

Linear models assume that:

f(x) = β0 +

p∑
j=1

βjxj = xTβ (2)

Despite their apparent simplicity, linear models remain remarkably useful and are often the
first choice in practice. This assumption is motivated by several factors:

1. Interpretability: Each coefficient βj represents the change in E[Y ] for a unit change in
xj , holding other variables constant. This “all else equal” interpretation is precisely what
scientists and decision-makers often seek. In medicine, we want to know: “If we increase
the dosage by 10mg, how much will the patient’s blood pressure change, on average?”
Linear models provide direct answers to such questions.
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2. Taylor Approximation: Any smooth function can be locally approximated by a linear
function (first-order Taylor expansion). If the true relationship is reasonably smooth and
we’re operating in a limited region of the input space, a linear approximation may be quite
accurate. This is the mathematical justification for why linear models often work well in
practice even when the true relationship is nonlinear.

3. Computational Tractability: Linear models admit closed-form solutions and efficient
algorithms. The ordinary least squares estimator can be computed in O(np2) time, and
gradient-based methods converge reliably because the loss function is convex. This com-
putational efficiency enables rapid model fitting, cross-validation, and uncertainty quan-
tification.

4. Statistical Properties: Under certain conditions, linear estimators have optimal prop-
erties (BLUE - Best Linear Unbiased Estimator). The Gauss-Markov theorem guarantees
that among all linear unbiased estimators, OLS has minimum variance. This theoretical
backing provides confidence in the reliability of our estimates.

5. Foundation for Advanced Methods: Understanding linear regression deeply is essen-
tial because many advanced techniques—including generalized linear models, mixed effects
models, and even neural networks—build upon or generalize linear regression concepts.

2 Mathematical Formulation

2.1 Model Specification

Definition 2.1 (Linear Regression Model). The linear regression model specifies:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ϵi, i = 1, . . . , n (3)

or in matrix notation:
y = Xβ + ϵ (4)

where:

• y = (y1, . . . , yn)
T ∈ Rn is the response vector

• X ∈ Rn×(p+1) is the design matrix with Xij = xij (including intercept column of 1s)

• β = (β0, β1, . . . , βp)
T ∈ Rp+1 is the parameter vector

• ϵ = (ϵ1, . . . , ϵn)
T ∈ Rn is the error vector

The matrix notation is not merely a convenience—it reveals the deep linear algebraic struc-
ture of regression and enables us to leverage powerful tools from matrix theory. The model
states that the response vector y is a linear combination of the columns of X, plus noise. Our
task is to find the coefficients β that best describe this linear combination.

2.2 The Design Matrix

The design matrix X has the structure:

X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 (5)
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Each row represents an observation, and each column (after the first) represents a feature.
The first column of all 1s corresponds to the intercept term β0; when we compute Xβ, this
column ensures that β0 is added to every prediction. This is sometimes called the “bias” term
in machine learning contexts, as it shifts the entire regression surface up or down.

The design matrix encodes all the information about our predictor variables. Its properties—
particularly its rank and the relationships among its columns—fundamentally determine what
we can learn from the data. If two columns are identical, we cannot distinguish their individual
effects. If a column is a linear combination of others, we face multicollinearity, which inflates
the variance of our estimates.

2.3 Geometric Interpretation

Understanding regression geometrically provides profound insight into what least squares actu-
ally does.

Remark 2.1 (Column Space Interpretation). The fitted values ŷ = Xβ̂ lie in the column
space of X, denoted C(X). This is a (p+ 1)-dimensional subspace of Rn (assuming X has full
column rank).

The least squares solution finds the point in C(X) closest to y in Euclidean distance. Geo-
metrically, ŷ is the orthogonal projection of y onto C(X).

Think of it this way: we live in an n-dimensional space (one dimension per observation).
The response vector y is a point in this space. The column space C(X) is a (p+ 1)-dimensional
hyperplane passing through the origin (or through any point if we exclude the intercept). Among
all points on this hyperplane, we seek the one closest to y. Basic geometry tells us this closest
point is found by dropping a perpendicular from y to the hyperplane—this perpendicular is
precisely the residual vector ϵ̂ = y − ŷ.

This geometric view immediately explains several key properties of least squares: the resid-
uals are orthogonal to the fitted values, the residuals are orthogonal to each predictor column,
and the total variation in y decomposes into explained variation (along the hyperplane) and
unexplained variation (perpendicular to it).

3 Classical Assumptions

The validity of statistical inference in linear regression depends critically on certain assumptions
about the data-generating process. These assumptions, known as the Gauss-Markov assump-
tions, determine when the ordinary least squares estimator has desirable properties. Understand-
ing these assumptions—and knowing when they might be violated—is essential for responsible
statistical practice.

3.1 The Gauss-Markov Assumptions

A1. Linearity in Parameters:
E[Y |X] = Xβ (6)

The conditional expectation of Y given X is a linear function of β.

This assumption states that the true relationship between the predictors and the expected
response is linear in the parameters. Note that this does not require linearity in the original
variables—we can include transformed variables like x2, log(x), or x1 · x2 as predictors,
and the model remains linear in the parameters β.

A2. Random Sampling / Exogeneity:

E[ϵi|X] = 0 ∀i (7)
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The errors have zero conditional mean given the predictors (strict exogeneity).

This is perhaps the most important assumption for causal interpretation. It requires that
the predictors contain no information about the errors—that is, knowing the values of X
tells us nothing about the expected value of ϵ. Violations occur when there are omitted
variables correlated with included predictors, when there is reverse causality, or when there
is measurement error in the predictors. When this assumption fails, OLS estimates are
biased and inconsistent.

A3. No Perfect Multicollinearity:

rank(X) = p+ 1 < n (8)

The design matrix has full column rank (no exact linear relationships among predictors).

This is a technical requirement ensuring that XTX is invertible so that the OLS solution
exists and is unique. Perfect multicollinearity occurs when one predictor is an exact linear
combination of others (e.g., including both temperature in Celsius and Fahrenheit). In
practice, we rarely have perfect multicollinearity, but near-multicollinearity (highly corre-
lated predictors) can cause numerical instability and inflated standard errors.

A4. Homoscedasticity:
Var(ϵi|X) = σ2 ∀i (9)

The conditional variance of errors is constant across all observations.

Homoscedasticity means “same scatter”—the spread of errors around the regression line
is the same regardless of the predictor values. Violations (heteroscedasticity) are com-
mon in practice: for example, income variance typically increases with education level,
and prediction errors for stock returns often increase during volatile market periods. Het-
eroscedasticity doesn’t bias the coefficient estimates, but it invalidates the usual standard
errors and confidence intervals.

A5. No Autocorrelation:
Cov(ϵi, ϵj |X) = 0 ∀i ̸= j (10)

Errors are uncorrelated with each other.

This assumption is particularly relevant for time series and spatial data, where nearby
observations often have correlated errors. For cross-sectional data with independent sam-
pling, this assumption typically holds. Autocorrelation, like heteroscedasticity, doesn’t
bias coefficient estimates but does invalidate standard errors.

Remark 3.1. Assumptions A4 and A5 can be combined as:

Var(ϵ|X) = σ2In (11)

This is called spherical errors.

3.2 Additional Assumption for Inference

For hypothesis testing and confidence intervals, we often add:

A6. Normality:
ϵ|X ∼ N (0, σ2In) (12)

Errors are normally distributed.

Under A1-A6, we have the Classical Normal Linear Regression Model:

y|X ∼ N (Xβ, σ2In) (13)
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4 Ordinary Least Squares (OLS) Estimation

4.1 The Least Squares Criterion

The method of least squares, developed by Carl Friedrich Gauss and Adrien-Marie Legendre in
the early 19th century, remains the most common approach to fitting linear regression models.
The intuition is straightforward: we want to find the line (or hyperplane) that makes the smallest
total “error” in predicting our response values.

But why squared errors? Several compelling reasons justify this choice:

• Mathematical tractability: Squared errors yield a smooth, differentiable objective func-
tion with a unique global minimum (assuming X has full rank).

• Statistical optimality: Under normally distributed errors, minimizing squared errors is
equivalent to maximum likelihood estimation.

• Geometric interpretation: Minimizing squared errors corresponds to finding the or-
thogonal projection onto the column space of X.

• Penalizing large errors: Squaring amplifies the penalty for large deviations, encouraging
the model to avoid egregious mispredictions.

Definition 4.1 (Residual Sum of Squares). The Residual Sum of Squares (RSS) or Sum
of Squared Errors (SSE) is:

RSS(β) =
n∑

i=1

(yi − ŷi)
2 = ∥y −Xβ∥22 = (y −Xβ)T (y −Xβ) (14)

The RSS is a quadratic function of β—it forms a paraboloid in parameter space. This
convexity guarantees that any local minimum is the global minimum, and that gradient-based
optimization methods will converge to the optimal solution.

The OLS estimator minimizes the RSS:

β̂OLS = argmin
β∈Rp+1

RSS(β) (15)

4.2 Derivation of the Normal Equations

The derivation of the OLS estimator is a beautiful application of multivariate calculus. We
differentiate the RSS with respect to the parameter vector and set the result equal to zero.

Theorem 4.1 (OLS Estimator). If XTX is invertible, the OLS estimator is:

β̂ = (XTX)−1XTy (16)

Proof. Expand the RSS:

RSS(β) = (y −Xβ)T (y −Xβ) (17)

= yTy − yTXβ − βTXTy + βTXTXβ (18)

= yTy − 2βTXTy + βTXTXβ (19)

Taking the gradient with respect to β:

∂RSS
∂β

= −2XTy + 2XTXβ (20)
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Setting equal to zero (first-order condition):

XTXβ̂ = XTy (21)

These are the normal equations. If XTX is invertible:

β̂ = (XTX)−1XTy (22)

The Hessian is ∂2RSS
∂β∂βT = 2XTX, which is positive semi-definite, confirming this is a minimum.

The matrix (XTX)−1XT is called the Moore-Penrose pseudoinverse of X (when X has
full column rank). It provides the “best” way to invert a non-square matrix in the least squares
sense.

The normal equations XTXβ̂ = XTy have a beautiful interpretation: they state that the
residual vector y−Xβ̂ must be orthogonal to every column of X. This orthogonality condition
is both necessary and sufficient for optimality.

4.3 The Hat Matrix and Projection

The hat matrix provides deep geometric insight into the mechanics of least squares regression.

Definition 4.2 (Hat Matrix). The hat matrix (or projection matrix) is:

H = X(XTX)−1XT (23)

It “puts the hat on y”: ŷ = Hy.

The hat matrix linearly transforms the observed responses into fitted values. Each fitted
value ŷi is a weighted average of all observed responses, with weights determined by the row Hi·.
The diagonal element hii measures how much observation i influences its own fitted value—this
is the leverage of observation i.

Proposition 4.2 (Properties of the Hat Matrix). The hat matrix H satisfies:

1. Symmetric: HT = H

2. Idempotent: H2 = H

3. Trace: tr(H) = p+ 1 (number of parameters)

4. Eigenvalues: All eigenvalues are 0 or 1

5. Range: R(H) = C(X)

The idempotency property (H2 = H) confirms that H is a projection matrix. Applying the
projection twice gives the same result as applying it once—once you’re on the subspace, you
stay there. This is the defining characteristic of projection operators.

Proof of idempotency.

H2 = X(XTX)−1XT ·X(XTX)−1XT (24)

= X(XTX)−1 (XTX)(XTX)−1︸ ︷︷ ︸
I

XT (25)

= X(XTX)−1XT = H (26)
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4.4 Residuals and the Residual Maker Matrix

Just as the hat matrix creates fitted values, the residual maker matrix creates residuals.

Definition 4.3 (Residuals). The vector of residuals is:

ϵ̂ = y − ŷ = y −Xβ̂ = (I−H)y = My (27)

where M = I−H is the residual maker matrix (or annihilator matrix).

The residuals represent the portion of the response that our model fails to explain. They
contain valuable information for diagnosing model problems: patterns in residuals may reveal
non-linearity, heteroscedasticity, or outliers.

Proposition 4.3 (Properties of the Residual Maker Matrix). 1. M is symmetric and idem-
potent

2. MX = 0 (residuals are orthogonal to predictors)

3. tr(M) = n− p− 1 (degrees of freedom for residuals)

4. HM = MH = 0

The property MX = 0 is crucial: it states that residuals are orthogonal to the column space
of X. This is the geometric manifestation of the normal equations. The trace of M equals
n − p − 1, which represents the degrees of freedom for error—the amount of “information” left
over after estimating p+ 1 parameters from n observations.

Remark 4.1 (Orthogonality Conditions). The OLS estimator satisfies:

XT ϵ̂ = XT (y −Xβ̂) = 0 (28)

This means:

•
∑n

i=1 ϵ̂i = 0 (residuals sum to zero, from the intercept column)

•
∑n

i=1 xij ϵ̂i = 0 for each predictor j (residuals uncorrelated with predictors)

5 Statistical Properties of OLS Estimators

5.1 Unbiasedness

Theorem 5.1 (Unbiasedness of OLS). Under assumptions A1-A3, the OLS estimator is unbi-
ased:

E[β̂|X] = β (29)

Proof.

E[β̂|X] = E[(XTX)−1XTy|X] (30)

= (XTX)−1XTE[y|X] (31)

= (XTX)−1XTXβ (since E[y|X] = Xβ) (32)
= β (33)

11



5.2 Variance-Covariance Matrix

Knowing that the OLS estimator is unbiased tells us that on average, across many samples,
we’ll get the right answer. But how much will our estimates vary from sample to sample? The
variance-covariance matrix quantifies this uncertainty.

Theorem 5.2 (Variance of OLS Estimator). Under assumptions A1-A5:

Var(β̂|X) = σ2(XTX)−1 (34)

This result is profound. The variance of our estimates depends on two factors: the noise level
σ2 (more noise means more uncertainty) and the structure of our predictors through (XTX)−1.
The matrix XTX is sometimes called the information matrix because it captures how much
information the predictors provide about the parameters.

Proof.

Var(β̂|X) = Var((XTX)−1XTy|X) (35)

= (XTX)−1XTVar(y|X)X(XTX)−1 (36)

= (XTX)−1XT (σ2I)X(XTX)−1 (37)

= σ2(XTX)−1XTX(XTX)−1 (38)

= σ2(XTX)−1 (39)

The diagonal elements of σ2(XTX)−1 give the variances of individual coefficient estimates,
while the off-diagonal elements give the covariances. High correlation between predictors inflates
these variances—this is the mathematical manifestation of multicollinearity.

5.3 The Gauss-Markov Theorem

The Gauss-Markov theorem is one of the crown jewels of statistical theory. It provides a powerful
justification for using OLS: among a large class of estimators, OLS is optimal.

Theorem 5.3 (Gauss-Markov). Under assumptions A1-A5, the OLS estimator β̂ is the Best
Linear Unbiased Estimator (BLUE). That is, among all linear unbiased estimators of β,
OLS has the smallest variance.

Let’s unpack this statement carefully:

• Linear: The estimator is a linear function of the response y.

• Unbiased: The expected value of the estimator equals the true parameter.

• Best: Among all estimators satisfying the above two properties, OLS has the smallest
variance (in the matrix sense—no other linear unbiased estimator has smaller variance for
any linear combination of parameters).

The theorem does not say that OLS is the best estimator overall. Biased estimators (like
ridge regression) can sometimes achieve lower mean squared error by trading a small amount of
bias for a large reduction in variance. And nonlinear estimators are not covered by the theorem
at all.

12



Proof. Let β̃ = Cy be any other linear unbiased estimator. Write C = (XTX)−1XT + D for
some matrix D.

For unbiasedness:
E[β̃|X] = CXβ = β =⇒ CX = I (40)

This requires DX = 0.
The variance of β̃:

Var(β̃|X) = σ2CCT (41)

= σ2[(XTX)−1XT +D][(XTX)−1XT +D]T (42)

= σ2(XTX)−1 + σ2DDT (43)

where cross terms vanish because DX = 0.
Since DDT is positive semi-definite:

Var(β̃|X) ≥ Var(β̂|X) (44)

with equality if and only if D = 0.

5.4 Estimation of σ2

To conduct inference, we need to estimate the unknown error variance σ2. We cannot simply
compute the sample variance of the residuals because residuals systematically underestimate the
true errors (the fitted line passes closer to the observed points than the true line does).

Theorem 5.4 (Unbiased Estimator of σ2). Under A1-A5, an unbiased estimator of σ2 is:

σ̂2 = s2 =
RSS

n− p− 1
=

ϵ̂T ϵ̂

n− p− 1
=

∑n
i=1 ϵ̂

2
i

n− p− 1
(45)

The denominator n− p− 1 is the degrees of freedom for error. We divide by this rather
than n because we’ve “used up” p + 1 degrees of freedom in estimating the coefficients. This
correction ensures unbiasedness and accounts for the fact that residuals are constrained to satisfy
p+ 1 orthogonality conditions.

Proof. We need to show E[ϵ̂T ϵ̂|X] = (n− p− 1)σ2.
Note that ϵ̂ = My = M(Xβ + ϵ) = Mϵ (since MX = 0).

E[ϵ̂T ϵ̂|X] = E[ϵTMTMϵ|X] = E[ϵTMϵ|X] (46)

= E[tr(ϵTMϵ)|X] = E[tr(MϵϵT )|X] (47)

= tr(ME[ϵϵT |X]) = tr(Mσ2I) (48)

= σ2tr(M) = σ2(n− p− 1) (49)

6 Distribution Theory and Inference

With the groundwork of estimation in place, we now turn to inference: testing hypotheses and
constructing confidence intervals. These require knowledge of the sampling distributions of our
estimators, which in turn require the normality assumption.

13



6.1 Distribution Under Normality

Under the full Classical Normal Linear Model (A1-A6), we obtain exact (finite-sample) distri-
butional results.

Theorem 6.1 (Distribution of OLS Estimator).

β̂|X ∼ N (β, σ2(XTX)−1) (50)

This follows because β̂ is a linear transformation of the normally distributed y, and linear
transformations preserve normality. Each individual coefficient β̂j is normally distributed with
mean βj and variance σ2[(XTX)−1]jj .

Theorem 6.2 (Distribution of RSS).

RSS
σ2

=
ϵ̂T ϵ̂

σ2
∼ χ2

n−p−1 (51)

and RSS is independent of β̂.

6.2 Hypothesis Testing

6.2.1 Testing Individual Coefficients

To test H0 : βj = β0
j versus H1 : βj ̸= β0

j :

t =
β̂j − β0

j

SE(β̂j)
=

β̂j − β0
j

s
√
[(XTX)−1]jj

∼ tn−p−1 (52)

under H0.

6.2.2 Testing Linear Restrictions (F-test)

Consider testing H0 : Rβ = r where R is a q × (p+ 1) matrix of restrictions.

Theorem 6.3 (F-test). Under H0:

F =
(Rβ̂ − r)T [R(XTX)−1RT ]−1(Rβ̂ − r)/q

s2
∼ Fq,n−p−1 (53)

6.2.3 Testing Overall Significance

To test H0 : β1 = β2 = · · · = βp = 0 (all slopes zero):

F =
(TSS − RSS)/p
RSS/(n− p− 1)

=
R2/p

(1−R2)/(n− p− 1)
∼ Fp,n−p−1 (54)

6.3 Confidence Intervals

6.3.1 Individual Coefficient

A (1− α) confidence interval for βj :

β̂j ± tα/2,n−p−1 · SE(β̂j) (55)
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6.3.2 Confidence Region for β

The joint (1− α) confidence region:

(β̂ − β)TXTX(β̂ − β) ≤ (p+ 1)s2Fα,p+1,n−p−1 (56)

This is an ellipsoid centered at β̂.

7 Model Evaluation and Diagnostics

7.1 Decomposition of Variance

Definition 7.1 (Sum of Squares Decomposition).

n∑
i=1

(yi − ȳ)2︸ ︷︷ ︸
TSS

=

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
ESS/RegSS

+

n∑
i=1

(yi − ŷi)
2

︸ ︷︷ ︸
RSS

(57)

where:

• TSS = Total Sum of Squares (total variation in y)

• ESS = Explained Sum of Squares (variation explained by model)

• RSS = Residual Sum of Squares (unexplained variation)

7.2 Coefficient of Determination

Definition 7.2 (R2).

R2 = 1− RSS
TSS

=
ESS
TSS

=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(58)

Proposition 7.1 (Properties of R2). 1. 0 ≤ R2 ≤ 1

2. R2 equals the squared correlation between y and ŷ: R2 = Corr(y, ŷ)2

3. Adding variables never decreases R2

4. R2 does not penalize model complexity

7.3 Adjusted R2

To penalize for model complexity:

R̄2 = 1− RSS/(n− p− 1)

TSS/(n− 1)
= 1− (1−R2)

n− 1

n− p− 1
(59)

7.4 Information Criteria

Definition 7.3 (AIC and BIC).

AIC = n ln

(
RSS
n

)
+ 2(p+ 2) (60)

BIC = n ln

(
RSS
n

)
+ (p+ 2) ln(n) (61)

Lower values indicate better models. BIC penalizes complexity more heavily for n > 8.
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7.5 Residual Analysis

7.5.1 Standardized and Studentized Residuals

Definition 7.4.

Standardized residual: ri =
ϵ̂i

s
√
1− hii

(62)

Studentized residual: ti =
ϵ̂i

s(i)
√
1− hii

(63)

where hii is the i-th diagonal element of H (leverage), and s(i) is the standard error estimate
computed without observation i.

7.5.2 Leverage

The leverage hii measures how far xi is from the center of the predictor space:

hii = xT
i (X

TX)−1xi (64)

Properties:

• 1
n ≤ hii ≤ 1

•
∑n

i=1 hii = p+ 1

• Average leverage: h̄ = p+1
n

High leverage points: hii > 2h̄ or hii > 3h̄.

7.5.3 Cook’s Distance

Measures the influence of observation i on all fitted values:

Di =
(ŷ − ŷ(i))

T (ŷ − ŷ(i))

(p+ 1)s2
=

r2i
p+ 1

· hii
1− hii

(65)

Rule of thumb: Di > 1 or Di > 4/n suggests influential observation.

8 Optimization Methods

8.1 Gradient Descent

8.1.1 Batch Gradient Descent

For the MSE loss J(β) = 1
2n∥y −Xβ∥2:

∇βJ = − 1

n
XT (y −Xβ) (66)

Update rule:
β(t+1) = β(t) − α∇βJ = β(t) +

α

n
XT (y −Xβ(t)) (67)

8.1.2 Stochastic Gradient Descent (SGD)

Update using a single randomly chosen observation:

β(t+1) = β(t) + α(yi − xT
i β

(t))xi (68)
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8.1.3 Mini-batch Gradient Descent

Update using a batch B of size b:

β(t+1) = β(t) +
α

b

∑
i∈B

(yi − xT
i β

(t))xi (69)

8.1.4 Convergence Analysis

Theorem 8.1 (Convergence of Gradient Descent). For the quadratic loss in linear regression,
gradient descent converges if:

0 < α <
2

λmax(XTX/n)
(70)

where λmax is the largest eigenvalue.
The convergence rate is:

∥β(t) − β∗∥ ≤
(
1− λmin

λmax

)t

∥β(0) − β∗∥ (71)

8.2 Normal Equation vs. Gradient Descent

Aspect Normal Equation Gradient Descent

Complexity O(np2 + p3) O(knp) per iteration
Memory O(p2) for XTX O(np) or O(p) for SGD
Exact solution Yes Approximate
Works when p > n No Yes (with regularization)
Hyperparameters None Learning rate α
Scalability Poor for large p Good for large n and p

Table 1: Comparison of optimization methods

9 Regularization

When p is large or features are correlated, regularization improves estimation.

9.1 Ridge Regression (L2 Regularization)

Definition 9.1 (Ridge Regression).

β̂ridge = argmin
β

{
∥y −Xβ∥2 + λ∥β∥22

}
(72)

Theorem 9.1 (Ridge Solution).

β̂ridge = (XTX+ λI)−1XTy (73)

Proposition 9.2 (Properties of Ridge). 1. Biased but lower variance: Bias2 increases, Var
decreases with λ

2. Always invertible (even when p > n)

3. Shrinks coefficients toward zero but doesn’t set them exactly to zero

4. Equivalent to MAP estimation with Gaussian prior: β ∼ N (0, τ2I)
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9.2 Lasso Regression (L1 Regularization)

Definition 9.2 (Lasso).

β̂lasso = argmin
β

{
∥y −Xβ∥2 + λ∥β∥1

}
(74)

where ∥β∥1 =
∑p

j=1 |βj |.

Key property: Lasso produces sparse solutions (some β̂j = 0 exactly), performing automatic
feature selection.

9.3 Elastic Net

Combines L1 and L2 penalties:

β̂EN = argmin
β

{
∥y −Xβ∥2 + λ1∥β∥1 + λ2∥β∥22

}
(75)

9.4 Bias-Variance Trade-off

Theorem 9.3 (Bias-Variance Decomposition). For any estimator f̂(x):

E[(y − f̂(x))2] = Var(f̂(x))︸ ︷︷ ︸
Variance

+ [Bias(f̂(x))]2︸ ︷︷ ︸
Bias2

+ σ2︸︷︷︸
Irreducible

(76)

Regularization introduces bias but reduces variance, potentially lowering total prediction
error.

10 Extensions of Linear Regression

10.1 Polynomial Regression

Transform features: if x is a scalar, create x′ = (1, x, x2, . . . , xd)T .

y = β0 + β1x+ β2x
2 + · · ·+ βdx

d + ϵ (77)

This is still linear in parameters β, so all linear regression theory applies.

10.2 Interaction Terms

Model interactions between predictors:

y = β0 + β1x1 + β2x2 + β3x1x2 + ϵ (78)

The effect of x1 on y now depends on the value of x2:

∂E[y]
∂x1

= β1 + β3x2 (79)

10.3 Generalized Least Squares (GLS)

When Var(ϵ) = σ2Ω (non-spherical errors):

β̂GLS = (XTΩ−1X)−1XTΩ−1y (80)

GLS is BLUE when the error covariance structure is known.
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10.4 Weighted Least Squares (WLS)

Special case of GLS when Ω = diag(w−1
1 , . . . , w−1

n ):

β̂WLS = argmin
β

n∑
i=1

wi(yi − xT
i β)

2 (81)

11 Multicollinearity: Deep Dive

11.1 Definition and Detection

Definition 11.1 (Multicollinearity). Multicollinearity exists when predictor variables are highly
correlated, i.e., when there exist constants c1, . . . , cp (not all zero) such that:

p∑
j=1

cjxij ≈ 0 ∀i (82)

11.1.1 Variance Inflation Factor (VIF)

Definition 11.2 (VIF). For predictor xj :

VIFj =
1

1−R2
j

(83)

where R2
j is the R2 from regressing xj on all other predictors.

Proposition 11.1.

Var(β̂j) =
σ2

(n− 1)Var(xj)
· VIFj (84)

Thus VIF directly measures how much the variance of β̂j is inflated due to multicollinearity.

11.2 Mathematical Consequences

When XTX is nearly singular:

• Eigenvalues span a wide range (high condition number)

• Small changes in y cause large changes in β̂

• Standard errors of coefficients are inflated

Definition 11.3 (Condition Number).

κ(XTX) =
λmax

λmin
(85)

A condition number > 30 indicates serious multicollinearity.

Part II

Logistic Regression

12 Introduction to Classification

While linear regression handles continuous outcomes, many real-world problems involve categor-
ical outcomes: Will a customer churn? Is this email spam? Does a patient have a disease? Will
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a loan default? These are classification problems, and they require fundamentally different
modeling approaches.

Classification is ubiquitous in modern applications. Medical diagnosis systems classify pa-
tients as healthy or diseased. Credit scoring models classify applicants as creditworthy or risky.
Spam filters classify emails. Image recognition systems classify objects. In all these cases, we
seek to predict a categorical outcome from observed features.

12.1 The Classification Problem

Definition 12.1 (Binary Classification). Given data {(xi, yi)}ni=1 where xi ∈ Rp and yi ∈ {0, 1},
find a function f : Rp → {0, 1} that accurately predicts the class label.

The binary classification problem appears deceptively similar to regression: we have inputs
and outputs, and we seek a predictive function. However, the discrete nature of the output
fundamentally changes the problem. We can’t simply minimize squared errors because the
output space is discrete. Instead, classification typically proceeds in two stages: first estimate
the probability of each class, then make a decision based on these probabilities.

This probabilistic approach has several advantages. It provides calibrated uncertainty esti-
mates (“I’m 90% confident this is spam”), allows for different decision thresholds based on costs
(missing a cancer diagnosis is worse than a false alarm), and enables principled combination of
multiple information sources.

12.2 Why Not Linear Regression for Classification?

A natural first thought might be: “Why not just use linear regression with y ∈ {0, 1}?” This
approach, sometimes called the Linear Probability Model (LPM), does see some use but
has fundamental problems.

If we model y ∈ {0, 1} using linear regression:

ŷ = xT β̂ (86)

Problems:

1. Predictions can be < 0 or > 1 (not valid probabilities): For extreme values of x,
the linear model can predict negative probabilities or probabilities greater than one, which
are nonsensical. This is not just a theoretical concern—it happens routinely in practice.

2. Heteroscedasticity: Var(y|x) = p(1−p) depends on x. When y is binary, its conditional
variance is π(1 − π) where π = P (y = 1|x). This variance is maximized when π = 0.5
and approaches zero as π approaches 0 or 1. Since π depends on x, the variance is not
constant—homoscedasticity is inherently violated.

3. Non-normal errors (Bernoulli distribution): The errors cannot be normally dis-
tributed because y can only take two values. This invalidates the standard inference
procedures (t-tests, F-tests) that rely on normality.

4. Decision boundary is not optimal: The linear probability model doesn’t optimize
any sensible classification criterion. It minimizes squared error, but for classification, we
typically care about maximizing likelihood or minimizing classification error.

These problems motivate the development of logistic regression, which addresses all of them
by modeling probabilities directly using an appropriate functional form.
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13 The Logistic Regression Model

Logistic regression is the workhorse of binary classification. It models the probability of the pos-
itive class as a function of the predictors, ensuring that predictions are always valid probabilities
between 0 and 1. The model is simple enough to be interpretable yet flexible enough to capture
many real-world relationships.

13.1 Model Specification

The key insight of logistic regression is to model the probability of the outcome rather than the
outcome itself, using a function that naturally constrains outputs to the interval (0, 1).

Definition 13.1 (Logistic Regression Model). The probability that y = 1 given x is modeled
as:

P (Y = 1|x) = π(x) =
1

1 + e−xTβ
=

ex
Tβ

1 + exTβ
(87)

Equivalently:

P (Y = 0|x) = 1− π(x) =
1

1 + exTβ
(88)

The model combines a linear predictor xTβ (just as in linear regression) with a nonlinear
transformation (the sigmoid function) that maps the entire real line to the unit interval. This el-
egant construction preserves the interpretability of linear models while respecting the constraints
of probability.

13.2 The Sigmoid (Logistic) Function

The sigmoid function is the mathematical heart of logistic regression. Understanding its prop-
erties is essential for understanding the model.

Definition 13.2 (Sigmoid Function).

σ(z) =
1

1 + e−z
=

ez

1 + ez
(89)

The sigmoid function has a characteristic S-shaped curve that smoothly transitions from 0
to 1. It was originally studied in the context of population growth models and has since found
applications throughout statistics, machine learning, and neural networks.

Proposition 13.1 (Properties of the Sigmoid). 1. Range: σ : R → (0, 1) — outputs are
always valid probabilities

2. Symmetry: σ(−z) = 1− σ(z) — the function is symmetric about the point (0, 0.5)

3. Derivative: σ′(z) = σ(z)(1−σ(z)) — a remarkably simple form that facilitates optimiza-
tion

4. Limits: limz→−∞ σ(z) = 0, limz→+∞ σ(z) = 1 — extreme inputs give extreme probabili-
ties

5. Inverse: σ−1(p) = ln
(

p
1−p

)
= logit(p) — the logit function inverts the sigmoid

The derivative property is particularly important. The fact that σ′(z) = σ(z)(1 − σ(z))
means the gradient can be computed efficiently from the function value itself, without additional
computation. This makes gradient-based optimization very efficient.
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Proof of derivative.

dσ

dz
=

d

dz

(
1

1 + e−z

)
=

e−z

(1 + e−z)2
(90)

=
1

1 + e−z
· e−z

1 + e−z
= σ(z) · 1

1 + ez
(91)

= σ(z)(1− σ(z)) (92)
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Figure 1: The sigmoid function transforms any real number into a probability between 0 and
1. The steepest part of the curve is near z = 0, where small changes in the input cause large
changes in the output probability.

13.3 Log-Odds (Logit) Representation

An alternative and highly interpretable way to express the logistic regression model is through
log-odds.

Definition 13.3 (Odds and Log-Odds).

Odds =
P (Y = 1|x)
P (Y = 0|x)

=
π(x)

1− π(x)
(93)

Log-odds (Logit) = ln

(
π(x)

1− π(x)

)
= xTβ (94)

The logistic regression model assumes the log-odds is linear in the predictors:

logit(π(x)) = ln

(
π(x)

1− π(x)

)
= β0 + β1x1 + · · ·+ βpxp (95)

13.4 Connection to Generalized Linear Models

Logistic regression is a Generalized Linear Model (GLM) with:

• Random component: Yi ∼ Bernoulli(πi)

• Systematic component: ηi = xT
i β

• Link function: g(π) = logit(π) = ln
(

π
1−π

)
The logit is the canonical link for the Bernoulli distribution.
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14 Maximum Likelihood Estimation

14.1 The Likelihood Function

For independent observations {(xi, yi)}ni=1:

L(β) =
n∏

i=1

P (Yi = yi|xi) =
n∏

i=1

πyi
i (1− πi)

1−yi (96)

where πi = π(xi) = σ(xT
i β).

14.2 The Log-Likelihood

ℓ(β) = lnL(β) =
n∑

i=1

[yi ln(πi) + (1− yi) ln(1− πi)] (97)

Using πi = σ(xT
i β) and properties of sigmoid:

ℓ(β) =

n∑
i=1

[
yi ln

(
πi

1− πi

)
+ ln(1− πi)

]
(98)

=

n∑
i=1

[
yix

T
i β − ln(1 + ex

T
i β)

]
(99)

14.3 The Cross-Entropy Loss

The negative log-likelihood (cross-entropy loss) is:

J(β) = − 1

n
ℓ(β) = − 1

n

n∑
i=1

[yi ln(πi) + (1− yi) ln(1− πi)] (100)

This loss function has an elegant interpretation: it heavily penalizes confident wrong predic-
tions. If the model predicts π = 0.99 (highly confident of class 1) but the true label is y = 0, the
term ln(1 − 0.99) = ln(0.01) ≈ −4.6 contributes a large positive value to the loss. Conversely,
confident correct predictions contribute very little to the loss.

Remark 14.1 (Information-Theoretic Interpretation). Cross-entropy measures the “distance”
between the true distribution p (with y ∈ {0, 1}) and predicted distribution q (with probabilities
π, 1− π):

H(p, q) = −Ep[ln q] = −[p ln q + (1− p) ln(1− q)] (101)

From information theory, cross-entropy quantifies the expected number of bits needed to encode
data from distribution p using a code optimized for distribution q. Minimizing cross-entropy
encourages the model’s predicted distribution to match the empirical distribution of labels.

14.4 Gradient of the Log-Likelihood

To maximize the log-likelihood (or equivalently, minimize the cross-entropy loss), we need its
gradient with respect to the parameters.

Theorem 14.1 (Score Function). The gradient (score) of the log-likelihood is:

∇βℓ =
n∑

i=1

(yi − πi)xi = XT (y − π) (102)

where π = (π1, . . . , πn)
T .
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Proof. For a single observation:

∂ℓi
∂β

=
∂

∂β

[
yix

T
i β − ln(1 + ex

T
i β)

]
(103)

= yixi −
ex

T
i β

1 + ex
T
i β

xi (104)

= yixi − πixi = (yi − πi)xi (105)

Summing over all observations gives the result.

Remark 14.2. The gradient has the same form as in linear regression! The difference is that
πi = σ(xT

i β) is nonlinear in β. This beautiful correspondence is not coincidental—it reflects
the deeper connection through generalized linear models, where logistic regression is the natural
choice for binary outcomes.

The gradient (yi − πi)xi has an intuitive interpretation: each observation contributes to the
gradient proportional to its prediction error (yi−πi) weighted by its feature vector xi. If yi = 1
but πi is small (underpredicting), the contribution is positive, pushing the coefficients to increase
the prediction. If yi = 0 but πi is large (overpredicting), the contribution is negative.

14.5 Hessian of the Log-Likelihood

The Hessian matrix (second derivative) tells us about the curvature of the log-likelihood function
and is essential for Newton-type optimization methods and for computing standard errors.

Theorem 14.2 (Hessian/Information Matrix). The Hessian is:

H = ∇2
βℓ = −

n∑
i=1

πi(1− πi)xix
T
i = −XTWX (106)

where W = diag(π1(1− π1), . . . , πn(1− πn)).

Proof.

∂2ℓ

∂β∂βT
= −

n∑
i=1

∂πi
∂β

xT
i (107)

= −
n∑

i=1

πi(1− πi)xix
T
i (108)

using ∂πi
∂β = πi(1− πi)xi.

Notice that the weights wi = πi(1 − πi) are largest when πi = 0.5 (maximum uncertainty)
and smallest when πi is near 0 or 1 (high confidence). Observations where the model is uncertain
contribute most to determining the parameters—this makes intuitive sense, as observations that
are clearly in one class or another provide less information about where the decision boundary
should be.

Corollary 14.3. The Hessian is negative semi-definite, so the log-likelihood is concave. This
guarantees that any local maximum is a global maximum.

This concavity is crucial: it means that gradient-based optimization will always find the
global optimum, regardless of initialization. There are no local maxima to get trapped in. This
is a significant advantage over many other machine learning models.
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14.6 Fisher Information

The Fisher Information matrix quantifies how much information the data provides about
the parameters:

I(β) = −E[H] = XTWX (109)

The Fisher Information appears in the asymptotic distribution of the MLE and determines
the precision of our parameter estimates.

Asymptotically:
√
n(β̂ − β)

d−→ N (0, I−1) (110)

This result is the foundation for inference in logistic regression. It tells us that for large sam-
ples, the MLE is approximately normally distributed, centered at the true parameter value, with
variance determined by the inverse Fisher Information. This enables us to construct confidence
intervals and perform hypothesis tests.

15 Optimization Algorithms

Unlike linear regression, the logistic regression MLE has no closed-form solution. The log-
likelihood is a nonlinear function of β, and we must resort to iterative optimization methods.
Fortunately, the concavity of the log-likelihood ensures that these methods converge to the global
optimum.

15.1 Newton-Raphson Method

The Newton-Raphson method uses second-order information (the Hessian) to take optimal steps
toward the maximum. The key idea is to approximate the log-likelihood locally by a quadratic
function and move to its maximum.

The Newton-Raphson update:

β(t+1) = β(t) − [H(t)]−1∇βℓ
(t) (111)

Substituting our expressions for the gradient and Hessian:

β(t+1) = β(t) + (XTW(t)X)−1XT (y − π(t)) (112)

Newton-Raphson typically converges very quickly—often in fewer than 10 iterations—because
it uses curvature information to take appropriately sized steps. Near the optimum, it exhibits
quadratic convergence, meaning the number of correct digits roughly doubles with each iteration.

15.2 Iteratively Reweighted Least Squares (IRLS)

A beautiful reformulation of Newton-Raphson reveals a connection to weighted least squares.
This is the IRLS algorithm.

The Newton-Raphson update can be rewritten as:

β(t+1) = (XTW(t)X)−1XTW(t)z(t) (113)

where z(t) = Xβ(t) + (W(t))−1(y − π(t)) is the working response.
This is a weighted least squares problem solved at each iteration! The algorithm repeatedly

solves weighted linear regressions, updating the weights and working response at each step. This
insight connects logistic regression to linear regression and allows us to leverage efficient linear
algebra routines.

[H] IRLS for Logistic Regression
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1. Initialize β(0)

2. Repeat until convergence:

(a) Compute π
(t)
i = σ(xT

i β
(t))

(b) Compute weights: w
(t)
i = π

(t)
i (1− π

(t)
i )

(c) Compute working response: z
(t)
i = xT

i β
(t) +

yi−π
(t)
i

w
(t)
i

(d) Solve: β(t+1) = (XTW(t)X)−1XTW(t)z(t)

15.3 Gradient Descent

Update rule:

β(t+1) = β(t) + α
n∑

i=1

(yi − π
(t)
i )xi (114)

For the loss function J(β) = − 1
nℓ(β):

β(t+1) = β(t) − α∇J = β(t) +
α

n
XT (y − π(t)) (115)

15.4 Stochastic Gradient Descent

Update using single observation:

β(t+1) = β(t) + α(yi − π
(t)
i )xi (116)

16 Interpretation of Coefficients

16.1 Effect on Log-Odds

Theorem 16.1 (Interpretation of βj). A one-unit increase in xj (holding other variables con-
stant) increases the log-odds by βj :

ln

(
π(x+ ej)

1− π(x+ ej)

)
− ln

(
π(x)

1− π(x)

)
= βj (117)

where ej is the j-th standard basis vector.

16.2 Odds Ratio

Definition 16.1 (Odds Ratio). The odds ratio associated with a one-unit increase in xj is:

ORj = eβj =
Odds(Y = 1|xj + 1)

Odds(Y = 1|xj)
(118)

Interpretation:

• OR > 1: increasing xj increases odds of Y = 1

• OR < 1: increasing xj decreases odds of Y = 1

• OR = 1: xj has no effect (βj = 0)
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16.3 Marginal Effects

The effect of xj on the probability is not constant:

∂π

∂xj
=

∂σ(xTβ)

∂xj
= σ(xTβ)(1− σ(xTβ)) · βj = π(1− π)βj (119)

This is maximized when π = 0.5 (at the decision boundary).

Definition 16.2 (Average Marginal Effect).

AMEj =
1

n

n∑
i=1

πi(1− πi)βj (120)

17 Model Evaluation

17.1 Classification Metrics

Definition 17.1 (Confusion Matrix). For threshold τ (typically 0.5):

Predicted
0 1

2*Actual 0 TN FP
1 FN TP

Key metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(121)

Precision =
TP

TP + FP
= P (Actual = 1|Predicted = 1) (122)

Recall (Sensitivity) =
TP

TP + FN
= P (Predicted = 1|Actual = 1) (123)

Specificity =
TN

TN + FP
= P (Predicted = 0|Actual = 0) (124)

F1 Score = 2 · Precision · Recall
Precision + Recall

(125)

17.2 ROC Curve and AUC

Definition 17.2 (ROC Curve). The Receiver Operating Characteristic (ROC) curve
plots:

• x-axis: False Positive Rate (FPR) = 1− Specificity = FP
FP+TN

• y-axis: True Positive Rate (TPR) = Recall = TP
TP+FN

as the classification threshold varies from 0 to 1.

Definition 17.3 (AUC). The Area Under the ROC Curve (AUC) equals:

AUC = P (π(xpos) > π(xneg)) (126)

the probability that a randomly chosen positive example has higher predicted probability than
a randomly chosen negative example.
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This probabilistic interpretation makes AUC particularly intuitive: it measures the model’s
ability to rank positive examples above negative examples. A model with AUC = 0.8 will, 80%
of the time, assign a higher probability to a randomly selected positive case than to a randomly
selected negative case.

Interpretation:

• AUC = 0.5: random guessing (no discriminative ability)

• AUC = 1.0: perfect classification (complete separation)

• AUC ≈ 0.7-0.8: acceptable discrimination

• AUC ≈ 0.8-0.9: good discrimination

• AUC > 0.9: excellent discrimination

AUC has several advantages as an evaluation metric: it is threshold-independent, it sum-
marizes performance across all possible operating points, and it is insensitive to class imbalance
(unlike accuracy).

17.3 Likelihood-Based Measures

While classification metrics evaluate the final predictions, likelihood-based measures evaluate
the quality of the probability estimates themselves.

17.3.1 Deviance

The deviance generalizes the residual sum of squares to non-normal likelihoods.

Definition 17.4 (Deviance).

D = −2ℓ(β̂) = −2
n∑

i=1

[yi ln(π̂i) + (1− yi) ln(1− π̂i)] (127)

Lower deviance indicates better fit. The deviance is analogous to the RSS in linear regression
and plays a central role in model comparison.

For comparing nested models:

∆D = Dreduced −Dfull ∼ χ2
∆p (128)

under H0 that the additional parameters are zero. This is the likelihood ratio test statistic.

17.3.2 Pseudo-R2 Measures

Unlike linear regression, logistic regression has no single universally accepted R2 measure. Sev-
eral “pseudo-R2” measures have been proposed, each with different interpretations.

Definition 17.5 (McFadden’s R2).

R2
McFadden = 1− ℓ(β̂)

ℓ(0)
(129)

where ℓ(0) is the log-likelihood of the null model (intercept only).

McFadden’s R2 measures the proportional improvement in log-likelihood relative to the null
model. Values between 0.2 and 0.4 are often considered satisfactory. Note that McFadden’s R2

can never reach 1.0 (unlike the linear regression R2), so direct comparison of magnitudes is not
appropriate.
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18 Hypothesis Testing

Statistical inference in logistic regression relies on asymptotic (large-sample) theory. Three clas-
sical test procedures are available, all asymptotically equivalent but with different computational
and practical properties.

18.1 Wald Test

The Wald test is the simplest and most commonly reported test, based on the asymptotic
normality of the MLE.

For testing H0 : βj = 0:

z =
β̂j

SE(β̂j)
d−→ N (0, 1) (130)

where SE(β̂j) =
√

[(XTŴX)−1]jj .
The Wald test is computationally convenient because it only requires fitting the full model.

However, it can be unreliable when the sample size is small or when the true parameter is far
from zero (the standard error estimate may be poor in these cases).

18.2 Likelihood Ratio Test

The likelihood ratio test compares the maximized likelihoods of nested models.
For testing H0 : βS = 0 (subset of coefficients):

Λ = −2[ℓ(β̂reduced)− ℓ(β̂full)]
d−→ χ2

q (131)

where q is the number of parameters being tested.
The likelihood ratio test is generally preferred over the Wald test because it has better small-

sample properties and is invariant to reparameterization. However, it requires fitting both the
full and reduced models.

18.3 Score Test (Lagrange Multiplier Test)

The score test evaluates whether the gradient of the log-likelihood is significantly different from
zero when evaluated at the null hypothesis.

S =

(
∂ℓ

∂β

∣∣∣
β0

)T

I−1(β0)

(
∂ℓ

∂β

∣∣∣
β0

)
d−→ χ2

q (132)

Advantage: only requires estimation under H0. This makes the score test computationally
attractive when the alternative model is expensive to fit, such as when testing whether to add
many variables to a model.

19 Regularization in Logistic Regression

Just as in linear regression, regularization helps prevent overfitting and handles multicollinearity
in logistic regression. The ideas are the same, but applied to the log-likelihood rather than the
sum of squared errors.
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19.1 L2 Regularization (Ridge)

Ridge logistic regression adds an L2 penalty to the log-likelihood:

β̂ridge = argmax
β

{
ℓ(β)− λ

2
∥β∥22

}
(133)

Gradient:
∇ = XT (y − π)− λβ (134)

The penalty shrinks coefficients toward zero, reducing variance at the cost of some bias.
Ridge regularization is particularly useful when predictors are correlated or when p is large
relative to n. It also ensures that the optimization problem has a unique solution even when the
classes are perfectly separable.

19.2 L1 Regularization (Lasso)

Lasso logistic regression uses an L1 penalty:

β̂lasso = argmax
β

{ℓ(β)− λ∥β∥1} (135)

Produces sparse models (feature selection). The L1 penalty drives some coefficients exactly
to zero, automatically selecting a subset of relevant features. This is valuable for interpretability
and when many features are believed to be irrelevant. However, the L1 penalty makes the
optimization problem non-smooth, requiring specialized algorithms like coordinate descent.

19.3 Elastic Net

Elastic net combines L1 and L2 penalties:

β̂EN = argmax
β

{
ℓ(β)− λ1∥β∥1 −

λ2

2
∥β∥22

}
(136)

Elastic net inherits the sparsity of lasso while also handling correlated predictors better (lasso
tends to arbitrarily select one of a group of correlated predictors, while elastic net includes or
excludes them together).

20 Multiclass Extensions

While binary classification is the most common application of logistic regression, many real-
world problems involve more than two classes. Two main approaches extend logistic regression
to handle multiple classes.

20.1 Multinomial Logistic Regression (Softmax)

Multinomial logistic regression directly generalizes binary logistic regression to K > 2 classes.
For K classes, model:

P (Y = k|x) = ex
Tβk∑K

j=1 e
xTβj

(137)

This is the softmax function:

softmax(z)k =
ezk∑K
j=1 e

zj
(138)
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The softmax function is a smooth approximation to the argmax function. It converts a vector
of real numbers into a probability distribution, with larger inputs receiving larger probabilities.
The “temperature” of the softmax can be controlled by scaling the inputs: dividing by a small
number makes the distribution more peaked (closer to argmax), while dividing by a large number
makes it more uniform.

Properties:

•
∑K

k=1 P (Y = k|x) = 1 — probabilities sum to one by construction

• Reduces to logistic regression when K = 2

• The model has K × (p + 1) parameters, but only (K − 1) × (p + 1) are identifiable (we
typically set βK = 0 as a reference)

Multinomial logistic regression is trained by maximizing the multinomial log-likelihood,
which is a straightforward extension of the binary cross-entropy.

20.2 One-vs-Rest (OvR)

An alternative approach trains K separate binary classifiers, each distinguishing one class from
all others combined.

Train K binary classifiers, each distinguishing class k from all others:

P (Y = k|x) ∝ σ(xTβk) (139)

Prediction: ŷ = argmaxk σ(x
Tβk)

OvR is simple to implement and can use any binary classifier. However, it has drawbacks:
the K classifiers are trained on different (imbalanced) datasets, and the predicted probabilities
from different classifiers are not directly comparable. Multinomial logistic regression is generally
preferred when a principled probabilistic model is desired.

21 Decision Boundaries

Understanding the geometry of decision boundaries provides intuition about what logistic re-
gression can and cannot model.

21.1 Linear Decision Boundary

The decision boundary is the set of points where the model is equally uncertain between classes—
where the predicted probability equals 0.5.

The decision boundary (where P (Y = 1|x) = 0.5) is:

xTβ = 0 ⇔ β0 + β1x1 + · · ·+ βpxp = 0 (140)

This is a hyperplane in Rp. In two dimensions, it’s a line; in three dimensions, a plane. The
key insight is that standard logistic regression can only produce linear decision boundaries—it
cannot capture curved boundaries without feature engineering.

21.2 Geometric Interpretation

The coefficients have a clear geometric interpretation:

• The normal vector to the hyperplane is β1:p = (β1, . . . , βp)
T — this vector is perpendicular

to the decision boundary
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• Distance from origin: |β0|
∥β1:p∥ — the intercept controls how far the boundary is from the

origin

• β points toward the region where P (Y = 1|x) > 0.5 — the positive class region

Moving in the direction of β increases the predicted probability of class 1. The magnitude of
the coefficients controls how quickly probabilities change as we move away from the boundary:
larger coefficients mean sharper transitions.

21.3 Non-linear Decision Boundaries

By including polynomial or interaction terms, logistic regression can model non-linear bound-
aries:

logit(π) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 (141)

The decision boundary becomes a conic section (circle, ellipse, parabola, hyperbola). With
higher-order polynomials, arbitrarily complex boundaries can be approximated. However, this
requires manual feature engineering and can lead to overfitting if not regularized.

This is the same principle as polynomial regression: the model remains linear in the param-
eters even though it’s nonlinear in the original features. Modern approaches like kernel methods
and neural networks automate this feature construction process.

22 Comparison: Linear vs. Logistic Regression

Despite their different applications, linear and logistic regression share deep structural similar-
ities. Both are members of the generalized linear model (GLM) family, differing only in the
choice of link function and error distribution.

Aspect Linear Regression Logistic Regression

Response type Continuous y ∈ R Binary y ∈ {0, 1}
Model E[Y |x] = xTβ ln P (Y=1|x)

P (Y=0|x) = xTβ

Distribution Y ∼ N (xTβ, σ2) Y ∼ Bernoulli(σ(xTβ))

Link function Identity Logit

Loss function MSE Cross-entropy

Estimation OLS (closed form) MLE (iterative)

Coefficient interpretation Change in E[Y ] Change in log-odds

Table 2: Comparison of linear and logistic regression. Both models use a linear predictor xTβ,
but they differ in how this predictor relates to the response.

The gradient of the loss function has the same form in both cases: XT (y − ŷ), where ŷ is
the vector of fitted values. In linear regression, ŷ = Xβ; in logistic regression, ŷ = π = σ(Xβ).
This beautiful correspondence reflects the underlying GLM structure.

23 Practical Considerations

Real-world application of logistic regression requires attention to several practical issues that
can affect model performance and reliability.
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23.1 Complete Separation

When a hyperplane perfectly separates classes, MLE does not exist (coefficients → ±∞).
Complete (or perfect) separation occurs when the two classes can be perfectly distinguished

by a linear boundary. While this might seem like a good situation, it causes the likelihood to
be maximized at infinity—the model wants to make increasingly confident predictions, pushing
coefficients toward ±∞.

Signs of separation include: coefficients with extremely large magnitudes, standard errors
that are orders of magnitude larger than the coefficients, and convergence warnings from the
optimization algorithm.

Solutions:

• Regularization (L1 or L2): Penalizing large coefficients prevents them from diverging.
This is the most common and practical solution.

• Firth’s penalized likelihood: Adds a specific penalty based on the Jeffreys prior, which
has been shown to reduce bias in small samples and handle separation.

• Exact logistic regression: Uses conditional inference to compute exact (rather than
asymptotic) p-values, avoiding the divergence problem entirely. Computationally intensive
for large datasets.

23.2 Class Imbalance

Class imbalance occurs when one class is much more frequent than the other—a common situ-
ation in fraud detection, rare disease diagnosis, and anomaly detection.

When P (Y = 1) ≪ P (Y = 0):

• Accuracy is misleading: A model that predicts the majority class for every observation
can achieve high accuracy while being completely useless. If 99% of observations are
negative, predicting “negative” always gives 99% accuracy.

• Use AUC, F1, precision-recall curves: These metrics are more informative for im-
balanced data. AUC measures discrimination regardless of class proportions. F1 balances
precision and recall.

• Consider resampling: Oversampling the minority class (e.g., SMOTE) or undersampling
the majority class can create a more balanced training set.

• Adjust classification threshold: Instead of using 0.5, choose a threshold that optimizes
your specific objective (e.g., maximizing F1 or achieving a target sensitivity).

• Use class weights in the loss function: Weight the minority class more heavily in the
loss function, so misclassifying minority examples incurs a larger penalty.

23.3 Feature Scaling

While not strictly necessary (the model is invariant to linear transformations of individual fea-
tures), scaling features to have similar ranges improves:

• Convergence speed of gradient descent: When features are on vastly different scales,
the loss surface is elongated, causing gradient descent to take many small zigzagging steps.
Scaling creates a more spherical loss surface.

• Numerical stability: Very large or very small feature values can cause numerical overflow
or underflow in the exponential calculations.
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• Interpretability of regularization: When features are on the same scale, the regular-
ization penalty treats all coefficients equally. Without scaling, coefficients for large-scale
features are penalized more heavily.

Common scaling methods include standardization (subtract mean, divide by standard devi-
ation) and min-max scaling (rescale to [0, 1]).

24 Summary of Key Equations

This section collects the most important equations from both parts of this document for quick
reference.

24.1 Linear Regression

Model: y = Xβ + ϵ (142)

OLS: β̂ = (XTX)−1XTy (143)

Variance: Var(β̂) = σ2(XTX)−1 (144)

MSE: MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (145)

R2: R2 = 1− RSS
TSS

(146)

24.2 Logistic Regression

Model: P (Y = 1|x) = 1

1 + e−xTβ
(147)

Log-odds: logit(π) = ln
π

1− π
= xTβ (148)

Loss: J = − 1

n

n∑
i=1

[yi lnπi + (1− yi) ln(1− πi)] (149)

Gradient: ∇J = − 1

n
XT (y − π) (150)

Hessian: H =
1

n
XTWX (151)

25 Conclusion

Linear and logistic regression are foundational techniques that every data scientist and statisti-
cian must master. Despite the proliferation of more complex methods—random forests, gradient
boosting, neural networks—these classical models remain invaluable for their interpretability,
computational efficiency, and theoretical guarantees.

Linear regression provides the essential framework for understanding relationships between
continuous variables. Its elegant mathematics—the projection interpretation, the Gauss-Markov
theorem, the clean distributional results under normality—offer deep insights that transfer to
more advanced methods.

Logistic regression extends these ideas to classification, demonstrating how the generalized
linear model framework accommodates different response types. The same linear predictor xTβ
appears in both models, transformed appropriately for the response distribution.
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Understanding these models deeply—their assumptions, their geometry, their optimization,
their inference procedures—provides the foundation for all of statistical learning. When a com-
plex model fails, the path forward often involves returning to these simpler models to diagnose
the problem. When interpretability is paramount, these models are often the right choice.

We encourage readers to not just memorize the formulas, but to understand the underlying
principles: why least squares makes sense geometrically, why the sigmoid function is natural for
probabilities, why maximum likelihood produces good estimators, and when each model’s as-
sumptions are likely to hold or fail. This conceptual understanding will serve you well throughout
your statistical career.

26 Further Reading

For readers wishing to deepen their understanding, we recommend the following texts:

1. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning.
Springer. — A comprehensive treatment of statistical learning methods, freely available
online.

2. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical
Learning. Springer. — A more accessible introduction, also freely available online, with R
code examples.

3. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. — Empha-
sizes the Bayesian perspective and connections to neural networks.

4. Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Wiley. —
Excellent coverage of GLMs with a statistical focus.

5. McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall. —
The classic reference on GLMs, mathematically rigorous.

6. Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press. — Practical guidance with real data examples.
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